Quantcast
Channel: Showing that $\int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx = \frac{\sin a}{\cos a + \cosh b}$ - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 3

Showing that $\int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx = \frac{\sin a}{\cos a + \cosh b}$

$
0
0

I want to show that $$ \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx = \frac{\sin a}{\cos a + \cosh b} \, , \quad -\pi < a < \pi . $$

I tried integrating $f \displaystyle (z) = e^{ibz} \, \frac{\sinh az}{\sinh \pi z} $ around an indented rectangular contour with vertices at $\pm R, \pm R+ i$.

I ended up with the equation $$ (1+ e^{-b} \cos a) \int_{-\infty}^{\infty} \frac{\sinh ax}{\sinh \pi x} \, \cos bx \, dx - e^{-b}\sin a \int_{-\infty}^{\infty} \frac{\cosh ax}{\sinh \pi x} \, \sin bx \ dx = e^{-b} \sin a . $$

But I don't see how to extract the value of the integral from this equation.

Did I integrate the wrong function?


Viewing all articles
Browse latest Browse all 3

Latest Images

Trending Articles





Latest Images